

Regional Planning in the Sacramento Region

Blueprint

Transportation/Land Use Project

Blueprint planning based on two key principles

Information-based planning

- •Developed highest quality data and analytical tools
- •Focused discussion on facts and education, not theology
- **Active resident planning**

Informed public = essential for healthy democracy
Provided residents objective tools and information listened carefully to what they told us

Blueprint Growth Principles

Housing Choices

Transportation

Mix Land Uses

Choices

High Quality Design

Compact **Development**

Protect Natural Resources

Use Existing Assets

SACOG's Scenario Tool Needs

Regional ——> Jurisdiction ——> Neighborhood

Economic Feasibility Test

Analyze building type placed on every parcel for...

•Expected costs vs. expected revenues

- Development Costs & Fees
 and Rent Database
- Calculate ROI (Return on Investment)Use local data collected for the region

Land Use Scenario

Return on Investment

Less Urban Land

ADDITIONAL URBANIZED LAND Through 2050 *(in square miles)*

RUCS Link to MTP/SCS, TCM, and NEPA

- 2008 MTP EIR mitigation measure for impacts to agricultural resources; greenhouse gas emissions
- Research project as part of the Transportation Control Measure Program
- Supports the NEPA Streamlining effort

Rural-Urban Connections Strategy

Enhancing Rural Economic Viability and Environmental Sustainability

RUCS Objectives

- Enhance rural economic viability and environmental sustainability
- Highlight rural challenges and opportunities
- Test agricultural market changes, policies and economic development strategies
- Protect and enhance natural resources and ecosystem services
- Determine rural transportation and other infrastructure needs

Agricultural Commodities

Food Chain Employment

Agriculture Industry Employment Source EDD CREE Data

Value of the Food System

Challenges & Opportunities

Topic Areas

- 1. Land Use and Conservation Policies and Plans
- 2. The Infrastructure of Agriculture
- 3. New Economic Opportunities
- 4. Forest Management
- 5. Regulations

Topic Development Process

Current Conditions Paper (Challenges & Opportunities) Current Conditions Workshop Innovations Paper Innovations Workshop Summary Report Implementation

Cost and Return Conventional Almond Production							
Sacramento I	Region						
Cost category	Input	Quantity	<u>Unit/acre</u>	Price		<u>Cost</u>	
Chemical	Roundup	3.00	pt	\$	8.40	\$	25.20
Chemical	Surflan	3.00	pt	\$	16.96	\$	50.88
Chemical	Goal 2XL	3.00	pt	\$	13.50	\$	40.50
Chemical	Rodent Bait	1.00	lb	\$	4.50	\$	4.50
Chemical	Rovral	1.00	lb	\$	25.00	\$	25.00
Chemical	Abound	14.00	floz	\$	2.78	\$	38.92
Chemical	Ziram	8.00	lb	\$	2.80	\$	22.40
Chemical	Dipel	2.00	lb	\$	15.63	\$	31.26
Chemical	Lorsban	4.00	pint	\$	4.00	\$	16.00
Chemical	Omite	7.50	lb	\$	8.23	\$	61.73
Chemical	Vanguard	5.00	oz	\$	4.09	\$	20.45
Contract	Consultant	1.00	acre	\$	25.00	\$	25.00
Contract	Hives	2.50	hive	\$	140.00	\$	350.00
Contract	Leaf Analysis	1.00	acre	\$	2.00	\$	2.00
Contract Labor	Shake Nuts	2.00	hour	\$	80.00	\$	160.00
Contract Labor	Sweep	2.00	hour	\$	55.00	\$	110.00
Contract Labor	Pick up, haul, hull and shell	2200.00	lb	\$	0.11	\$	242.00
Fertilizer	UN-32	220.00	lb	\$	0.29	\$	63.80
Fertilizer	Zinc Sulfate	30.00	lb	\$	0.50	\$	15.00
Fertilizer	Potassium Sulfate	500.00	lb	\$	0.23	\$	115.00
Irrigation	Water	36.00	acin	\$	2.67	\$	96.12
Fuel	Gasoline	11.15	gallons	\$	3.98	\$	44.38
Fuel	Diesel	11.88	gallons	\$	3.84	\$	45.62
Labor	Labor (machine)	11.56	machine hrs	\$	15.00	\$	173.40
Labor	Labor (nonmachine)	11.72	hrs	\$	12.00	\$	140.64
Total Operating Cost/Acre						\$	1,919.79

Building a Crop Map

- Pesticide Use Report data
- Department of Water Resources data
- Satellite data
- Windshield surveys
- Ground truth with growers
- Cost of production studies
- 1 year, \$700,000 +/- to build crop map
- Data for 1 year (2008), but includes rotations

Importance of Crop Maps

Land use/crop maps

- Planning level resources
- Used by several organizations/entities
- Timing/frequency of current data (DWR)
 - Once every 4–8 years
 - Crops/fallowing change annually
- Costs can be significant to update manually

Crop Mapping Approach

Innovative Crop Mapping approach using Remote Sensing Techniques

- Match imagery with crop phenology
 - Spatial and temporal variations
 - Critical growth stages (e.g. flowering, etc)
 - Cropping patterns (across years)
 - Irrigation and cultural practices
- Comprehensive analytical toolset
 - Object-based remote sensing methods
 - Advanced statistical data mining techniques
 - GIS linkage for end-user analysis and Communication

Example: Merced County

Vine Spacing: Central Tendency

Temporal Crop Signatures

PLACE³S Scenario Model

PLACE³S Scenario Model: Farmer's Economic Pro Forma

Purpose: Understand agricultural viability by using "what if" scenarios:

- Market changes
- Cropping patterns
- Farm practices
- Planning that supports agriculture
 Example: Changing alfalfa rotation to dried

plums improved economic return

PLACE³S Model Design

Model Inputs

Current or future crops Costs (labor, fuel, fertilizer, etc.) Crop yield and price Other factors (e.g., habitat, easement value) **Model Outputs** Crop value Demand for inputs (water, seed, trucking, etc.) Profit (Revenue – Cost)

Farmland and Forestry

Econometric (Predictive) Model

Econometric (Predictive) Model

Purpose: Understand future risks and uncertainties that affect agriculture Global markets' affect on local producers? •What factors most affect which crops? Possible changes in crop patterns?

Econometric Model Background

- Agriculture is a dynamic landscape
- Perennials are "permanent," less complicated
- Annual crops are rotated, complicated
- Helpful to simply: alfalfa, grain, rice, tomato
- Statistical analysis groups parcels into types of agriculture

Determining Crop Probabilities

Factors in crop decisions:

- Temperature
- Precipitation
- Soil quality
- Elevation & slope
- Proximity to roads, rivers, cities
- Water & weather
- Costs and prices

Predictive Model: Factors affecting viability

Variables affecting crops:

- Chemicals
- Equipment
- Fertilizer
- Fuel
- Irrigation
- Labor
- Seed
- Commodity Prices

Predictive Model: Scenario Examples

Russian drought and fire reduce wheat harvest \rightarrow Grain prices increase Oil resources become more scarce \rightarrow Fuel, chemical and fertilizer prices increase Construction industry heats up again \rightarrow Labor prices increase **Drought persists** \rightarrow Surface water decrease, Irrigation costs increase

Predictive Model: Stable vs. Double Grain Prices

Crop Type: Grain

Predictive Model: Stable vs. Double Fuel Prices

Crop Type: Tomato

Rural Communities Fiscal Model

New Tools for Understanding Agricultural Viability

(1) CROP MAP I-PLACE³S PLACE³S D ZOOMIN 2X V O ZOOMOUT 2X V O PAN O IDENTIFY PARCE Arrest Labor Put Title Engld Par 18 Acces vision vision stati 100% REDEV MODE MARK 100% AGRE PLACE TYPE-LE SCENARIO Parcel Line Map Size: 28 Redraw **(2) ECONOMETRIC MODEL** RANGELAND ALFALFA RICE GRAIN TOMATO |FALLOW FUEL PRICES FUEL PRICES AND USE PLAN **③ DIET/LAND NEEDS** INFRASTRUCTURE/FISCAL MODEL (IMPACS) COST TO \$\$\$ BUILD, **TYPE & AMOUNT** REVENUE GENERATED FROM MAINTAIN & **OF INFRASTRUCTURE &** TYPEOF CONSUMPTION HOW MUCH LAND USE PLAN LOCAL SERVICES NEEDED PROVIDE SERVICES PEOPLE

Fiscal Impacts Model

Purpose: Help small rural communities make growth decisions that are fiscally sustainable **Challenges:**

- Growth of any kind sometimes looks like economic progress
- Needed infrastructure investments to fix existing problems sometimes contribute to this problem

Example: Better balanced land uses more fiscally viable than housing subdivision

Modeling Objectives

- Address the imbalance between infrastructure and service costs and revenue
- Estimates infrastructure and service needs and costs from various land use plans
- Estimates revenues from same plan
- Identifies gaps and determines additional revenue needed
- Can be used for rural or urban areas

Model Inputs

- Land use information (acres and type of development)
- Development parameters

 (e.g., street pattern, amount of infill)
- Systems specifications

 (e.g., water system demand and capacity)

Code	Residential	Acres	% of Land	H Si
LU_Res1	Rural Residential	0.0	0.0%	2.8
LU_Res2	Very Low Density Residential	4.0	7.8%	2.8
LU_Res3	Low Density Residential	19.0	37.3%	2.5
LU_Res4	Medium Density Residential	10.0	19.6%	2.2
LU_Res5	Medium-High Density Residential	0.0	0.0%	2.1
LU_Res6	High Density Residential	0.0	0.0%	1.7
	Total	33.0	64.7%	

Code	Mixed Use	Acres	% of Land	H Si
LU_Mix1	Mixed Use Residential Focus	0.0	0.0%	1.5
LU_Mix2	Mixed Use Employment Focus	0.0	0.0%	1.5
	Total	0.0	0.0%	

Acres

Н

3-A BLOCK STREET PATTERN:

3-B STREET WIDTH:

Type	Description	ROW (ft)	Pavement width	Sidewalk Width (ft)	Sidewalk	Curb & Gutter	Lighting Spacing
			(ft)		Completeness	Completeness	(ft)
StreetA	arterial street	80.00	48.00	6.00	100.00%	100.00%	300
StreetB	collector street	60.00	48.00	4.00	100.00%	100.00%	300
StreetC	local access 1	50.00	36.00	3.00	100.00%	100.00%	100
StreetD	local access 2	50.00	24.00	4.00	100.00%	100.00%	100
StreetE	parkway	50.00	24.00	0.00	0.00%	0.00%	500

Assign Development Pattern to Land Uses

Code	Land Use	Street Pattern
LU_Res1	Rural Residential	Rural Block
LU_Res2	Very Low Density Residential	Rural Block
LU_Res3	Low Density Residential	Cul-de-Sac Block
LU_Res4	Medium Density Residential	Modified Grid Block
LU_Res5	Medium-High Density Residential	Mixed Block
LU_Res6	High Density Residential	
LU_Mix1	Mixed Use Residential Focus	
LU_Mix2	Mixed Use Employment Focus	
LU_NRes1	Moderate Intensity Office	
LU_NRes2	Community/Neighborhood Commercial / Office	
LU_NRes3	Light Industrial Office	

Default Street Pattern Modified Grid Block

Default Local Street StreetC

Default Major Street StreetB

	High	Median	Low
Interior GPCD	70	55	50
Toilets, Kitchen Sinks etc.	21	18	15
Residential Interior Demand	17,808,350	13,992,275	12,720,250
ResidentialSewer	14,246,680	11,193,820	10,176,200

Non-Residential Potable Water Demand Rates	
Total Non Residential FTE	594

	Interio	or GPFTE (gallons / FT	
Land Use	FTE	High	Median
Moderate Intensity Office	126	3,219,300	2,529,450
Community/Neighborhood Commercial / Office	108	2,759,400	2,168,100
Light Industrial Office	149	3,806,950	2,991,175
Community / Neighborhood Retail	21	536,550	421,575
Regional Retail	102	2,606,100	2,047,650
Light Industry	0	0	0
Heavy Industry	0	0	0
Warehouse / Storage	0	0	0
Recreation Center	0	0	0
Public /Quasi Public	0	0	0
Restaurant Dining	0	0	0

County	Community		Water Sup	ply	Water Treatment				
		Source	Existing	Designed	Source	Existing	Desi		
	UNITS	-	MGD	MGD	-	MGD	M		
El Dorado	Cameron Park	11			11	32	3		
El Dorado	Camino	11			11	32	3		
El Dorado	Cool	1			1	4.6	5		
El Dorado	Diamond Springs/El Dorado	11			11	32	3		
El Dorado	Fairplay	13			13				
Yolo	Dunnigan	5			5				
Yolo	Elkhorn	7			7				
Yolo	Knights Landing	4	1	4.3	4				
Yolo	Madison	6	0.28	0.93	6				
Yolo	Winters	2	10.1	19.4	2				
Assumption	For Water Supply, unlimited am	ount of G	.W. supply v	vill be availab	le.				
Assumption	: For Water Treatment, Water Sto	rage and	Sewer Treat	ment, empty	cells me	an no public/	commu		
Sources:									
1. Georgetov	vn Divide Public Utility District Ca	apital Fac	ility Charge S	Study					

2: Yolo County Draft Winters Municipal Services Review Infrastructure Needs and Deficiences. RMC Water an

3: County of Yolo 2030 Countywide General Plan - Public Facilities and Services Element

4: Knights Landing Community Services District. Final MSR/SOI Municipal Services Review, 2006

5: Yolo County Integrated Regional Water Management Plan

Model Outputs

Infrastructure needs and costs (total & per unit; public & private)

Service costs

Payback period

Revenue sources

Cost-revenue gap

MONICIPAL INFRASTING	SCIONE SOF						
Select Standards Scenario	Median		Public Sector	CapitalCost	Cost / ERU	Annual O&N	08M/ERU
Select Cost Scenario		123	Cost				
Select Capacity Scenario			Implication	\$811,830	\$2,206	\$115,498	\$314
C	Oraci	itian	Canital Construction	an Caste	Assess Ot	H Coste	Uheck to
Component	Tabal (6)	ENEDI	Capital Construction	D. FDU	Tabl	D. EDU	Include
	rotai (ity	TULNO	Total	PELEKO	TOCAL	FOLCHO	Canital Cart
ROADWAY INFRASTRUCTU	RE						
Local Streets	3,164	24.3	\$4,925,209	\$13,384	\$2,564	\$7	
Major Streets	3,519	9.6	\$2,233,459	\$6,069	\$1,223	\$3	
Street Upgrades	0	0.0	\$0	\$0	\$0	\$0	œ
Total Streets & Roadway	12,683	34.5	\$7,158,667	\$19,453	\$3,787	\$10	
WATER INFRASTRUCTURE	ft	ft/ERU					
Laterals	23,615	64.2	\$435,322	\$1,348	\$966	\$2.6	
Distribution + Main	13.183	35.8	\$1.694.550	\$4.605	\$3,864	\$10.5	
Total Vater Distribution	36,798	100.0	\$2,190,471	\$5,952	\$4,830	\$13.1	-
8			4945 000	+956	** ***	196 3	12
Supply, Freatment, Storage	8 <u>5</u> 6	36	\$315,000	\$030	13,000	\$20.3	
Total ¥ater	0	0.0	\$2,505,471	\$6,808	\$14,490	\$39.4	
STORMWATER INFRASTRU	l ft	ft/ERU		2 × 2 × 1			
Laterals	23,615	64.2	\$1,586,950	\$4,312	\$18,892	\$51.3	
Collection	12,683	34.5	\$3,835,272	\$10,422	\$57,073	\$155.1	
Detention	2245.96299	20385	\$62,196	\$169	\$5,000	\$13.6	
Total Stormwater Infrast	36,298	98.6	\$5,484,417	\$14,903	\$80,965	\$220.0	
SEVER INFRASTRUCTURE	ft	ft/ERU					
Laterals	23.615	64.2	\$1.322.458	\$3,594	\$773	\$2.1	
Trunk + Collection	13,183		\$1.802.525	\$4.898	\$3.091	\$8.4	
Treatment		2.2	\$196.830	\$535	\$11,592	\$31.5	G
Total Sever	36,798	100.0	\$3,321,813	\$9,027	\$15,456	\$42.0	
PARKSINERASTRUCTURE	acres	acre/EBU					
Sports Facility	0	0.000	\$0	t 0	t 0	\$0.0	
Citu Park	3	0.008	\$300.000	12 446	t600	116	H
Pocket Parks/Tot Lots	1	0.003	\$300,000	t815	\$200	t0.5	
Total Service	-	0.000	t1 200 000	\$3.261	1800	\$2.2	
. Stal Del Nice	20	0.011	\$1,200,000				
SERVICE INFRASTRUCTURI	E #	#/ERU					
Police Officer(s)	1	-			\$90,000	\$244.6	
Fire Fighter(s)	1	-			\$95,000	\$258.2	
Other (health, education, etc.)	1.25	25	10 : - 35		\$267,080	\$725.8	
Total Service	2	12	\$0	\$0	\$452,080	*****	

MUNICIDAL INCOACTOUCTUDE CUMMADY

otal Infrastructure Cos	\$19,670,369	\$53,452	\$567,578	\$1,542
n Site (Developer) Cos	\$17,958,540	\$48,800		
Public Sector Costs	\$811,830	\$2,206	\$115,498	\$314

Annual O&M Costs 1%% 14% 3% 79% ROADWAYINFRASTRUCTURE WATER INFRASTRUCTURE STORMWATER INFRASTRUCTU SEWER INFRASTRUCTURE SERVICE INFRASTRUCTURE

PARKSINFRASTRUCTURE

		Step 1		Step 2						Step 3							
SACOG	Introd	uction Define Comparis Description		Cali	brate I	nfrastructu	ire Assu	mptions &	Input	s						Data &	
.0	mitroc	Denne Scenario Program	Dema	and	C	apacity		Cost		Rev	enue		View Oi	itputs & Rep	orts	References	
(b)	1. Spe	ecify Scenario Details 2. Enter l	Land Use I	nformatio	n	3. Ent	er Deve	lopment P	arame	eters					Import f	from Places	3
		Input Mode:	Enter	Area	_		Impo	rt Defaults fr	om Pro	totype					=	-	
	Code	Residential	Acres	% of Land	HH Size	Net Density (Dillog)	Avg Lot	Avg Bldg Footprin	Floor	Avg DU/Bid	FAR	Set back	DU	Residents	FTE	GFA	ERU
	LU_Res1	Rural Residential	0.0	0.0%	2.8	1	1	3,049	1	1	0.07	120	0	0	0	0	0
	LU_Res2	Very Low Density Residential	4.0	7.8%	2.8	4	0.25	2,831	1	1	0.26	60	16	45	0	45,296	16
	LU_Res3	Low Density Residential	16.0	31.4%	2.5	8	0.125	2,505	1	1	0.46	50	128	320	0	320,640	128
	LU_Res4	Medium Density Residential	10.0	19.6%	2.25	12.1	0.083	1,012	2	1	0.56	40	121	272	0	244,904	121
	LU_Res5	Medium-High Density Residential	0.0	0.0%	2.1	24.9	0.5	7,514	2	13	0.69	30	0	0	0	0	0
	LU_Res6	High Density Residential	0.0	0.0%	1.75	43.5	2	19,602	4	87	0.9	20	0	0	0	0	0
		Total	30.0	58.8%									265	637	0	610,840	265
	Code	Mixed Use	Acres	% of Land	HH Size	FAR	Avg Lot	Avg Bldg Footprin	# Floor	Avg DU/Bld	sf/F TE	Set Back	DU	Residents	FTE	GFA	ERU
	LU_Mix1	Mixed Use Residential Focus	🛪 3.0	5.9%	1.5	1.36	1.5	22,216	4	56	576	20	111	167	38	177,725	182
	LU_Mix2	Mixed Use Employment Focus	0.0	0.0%	1.5	1.08	1.5	17,642	4	52	350	20	0	0	50	0	0
		Total	3.0	5.9%			8			24		3	111	167	88	177,725	182
		V		Z of	нн		Aun	Ava Bida		Ανα	stiF	Set					
	Code	Non-Residential	Acres	Land	Size	FAR	Lot	Footprin	Floor	DU/Bid	TE	Back	DU	Employees	FTE	GFA	ERU
	LU_NRes1	Moderate Intensity Office	1.0	2.0%	0	1.02	0.25	5,554	2	0	350	100	0	126	126	44,431	17
	LU_NRes2	Community/Neighborhood Commercial / Office	3.0	5.9%	0	0.29	0.25	1,053	3	0	350	100	0	108	108	37,897	15
	LU_NRes3	Light Industrial Office	4.0	7.8%	0	0.3	0.5	3,267	2	0	350	50	0	149	149	52,272	20
	LU_NRes4	Community / Neighborhood Retail	1.0	2.0%	0	0.28	0.5	6,098	1	0	576	100	0	21	21	12,197	4
	LU_NRes5	Regional Retail	4.0	7.8%	0	0.34	5	74,052	1	0	576	100	0	102	102	59,242	23
	LU_NRes6	Light Industry	0.0	0.0%	0	0.33	2	28,750	1	0	400	100	0	0	0	0	0
	LU_NRes7	Heavy Industry	0.0	0.0%	0	0.23	2	20,038	1	0	2500	100	0	0	0	0	0
	LU_NRes8	Warehouse/Storage	0.0	0.0%	0	0.33	2	28,750	1	0	20000	100	0	0	0	0	0
	LU_NRes9	Recreation Center	0.0	0.0%	0	0.3	3	39,204	1	0	2175	100	0	0	0	0	0
	LU_NRes10	Public/Quasi Public	0.0	0.0%	0	0.3	1.5	6,534	3	0	2175	100	0	0	0	0	0
	LU_NRes11	Restaurant Dining	0.0	0.0%	0	0.28	1	12,197	1	0	482.5	50	0	0	0	0	0
	LU_NRes12	Hotel	0.0	0.0%	0	0.34	3	11,108	4	0	2200	200	0	0	0	0	0
	LU_NRes13	Medical / dental clinic	0.0	0.0%	0	0.98	1	42,689	1	0	350	50	0	0	0	0	0
	LU_NRes14	Church	0.0	0.0%	0	0.23	2	20,038	1	0	2175	100	0	0	0	0	0
	LU_NRes15	Schools	0.0	0.0%	0	0.3	5	65,340	1	0	1370	200	0	0	0	0	0
		lotal	13.0	25.5%									0	506	506	206,039	79

Fiscal Model Discussion

- Are your small communities experiencing growth pressure?
- How are they dealing with issues, such as:
 - Job-housing balance
 - Infrastructure investment and O&M
 - Services
- Are these responses different than the past?
- Is this model helpful?
 - What are we missing? (What can be improved?)

Understanding the Local Food Economy

Local Food System

Purpose: Estimate supply and infrastructure needs to meet consumer demand for locally grown food

- Changing diets
- Expanded direct markets
- •New wholesale and institutional markets
- •Retail and value-added markets

Production and Consumption

Consumption 2.2 million tons

 2% Locally Produced

Production 3.4 million tons

Local food analysis chart

- Aggregate local produce
- Volume for larger customers
- Use existing distributors to get local food to market
- Marketing and labeling as "local"
- Shared facilities

- Diversify products
- Serve customers that need processed food
- Commercial kitchens
- Repurpose existing processing
- Mobile processing
- Shared facilities

Food Hub Research

Illinois Packing House Financial Data and Acreage Sensitivity Analysis

Acres	Net Revenue	Gross Margin	SG&A	Operating Income	Operating Margin	Net Income	Seasonal Utilization	Annual Utilization
500	\$1,767,136	12.1%	20.2%	(\$143,350)	-8.1%	(\$320,527)	13.4%	4.4%
1000	\$3,534,272	12.1%	10.1%	\$69,760	2.0%	(\$107,417)	26.8%	8.8%
1260	\$4,453,183	12.1%	8.0%	\$180,577	4.1%	\$2,210	33.7%	11.1%
2500	\$8,835,680	12.1%	5.5%	\$583,668	6.6%	\$263,889	66.9%	22.1%
3500	\$12,369,952	12.1%	5.3%	\$839,135	6.8%	\$429,612	93.7%	30.9%
10500	\$37,109,856	12.1%	5.0%	\$2,619,505	7.1%	\$1,584,375	281.0%	92.6%

Source: Ready to Grow: A Plan for Increasing Illinois Fruit and Vegetable Crop Production

New Tools for Understanding Agricultural Viability

CROP MAP I-PLACE³S PLACE³S O ZOOMIN 2X V OZOOMOUT 2X V O PAN O IDENTIFY PARCE Arrust Labor Par 18 Actual No. 500 + 200 List - 520 100% REDEV MODE MARK 100% AGRE PLACE TYPE-LE SCENARIO Parcel Line Map Size: 28 Redraw ECONOMETRIC MODEL ALFALFA RICE GRAIN DIAMOT FALLOW FUEL PRICE FUEL PRICES AND USE PLAN **DIET/LAND NEEDS INFRASTRUCTURE/FISCAL MODEL (IMPACS)** COST TO **\$\$\$** BUILD, **TYPE & AMOUNT MAINTAIN &** REVENUE GENERATED FROM **OF INFRASTRUCTURE &** LAND USE PLAN LOCAL TYPEOF CONSUMPTION HOW MUCH SERVICES NEEDED PROVIDE SERVICES PEOPLE

Linking Consumption to Production

- Land Needs Model Inputs:
- Population
- Consumer diet(s)
- Percent local
- Farming system(s)
- •Farmer skill level(s)

Farmland Needs for Local Food

Acres (excluding meat and dairy production)

Assumes 1) USDA recommended diet, and 2) mostly expert farmers

New Tools for Understanding Agricultural Viability

Markets and Revenue

Farm Scale

- Wholesale and Institutional buyers have lower price point
- Larger farms may be better able to serve these markets
- Trade off margins for volume
- Hand labor → Machine labor
- Larger scale \rightarrow Cost per acre decrease

Markets and Revenue

Rural-Urban InterfaceHard EdgeSoft Edge

Rural-Urban Interface:

Percent likelihood of fallowing at...

Reducing Conflict Rural

Urban

Invasive Plants

andalism/

heft

Innovations at the Edge and Beyond

Infill & Redevelopment

Rural-Urban Edge

- Buffers
- Ag Parks
- Right-to-Farm
- Policy Boundaries
- City-County Agreements

Supporting Ag Viability Beyond the Edge

- City-County
 Agreements
- Voter Initiatives
- Supportive Zoning
- Open Space Plans
- · Easements, TDRs, etc.

Habitat Opportunities on Agriculture Lands

Rice

10 species including Swainson's hawk, burrowing owl, peregrine falcon

Row Crops

7 species including Swainson's hawk, burrowing owl, loggerhead shrike

Irrigated Pasture

10 species including Swainson's hawk, burrowing owl, peregrine, falcon

<u>Alfalfa</u>

9 species including Swainson's hawk, burrowing owl, ferruginous hawk

Orchards

3 species including Cooper's hawk, yellow warbler

Grazing, no vernal pools

16 species including Swainson's hawk, burrowing owl

Grazing, with vernal pools

16 species including fairy shrimp, tadpole shrimp

Source: Sierra Club, Mother Lode Chapter

Surface Water System

Ag Land Conversion: Vehicle C0₂ Emissions

For every 10 acres:

Agriculture = 0.5–1.0 ton / YEAR

Development = 0.5-1.0 ton / DAY

Transportation Challenges Urbanizing rural roads Conflicts/accidents Farm worker transport **Road standards** Maintenance

Urban Rural/Edge Travel: Existing Conditions

Urban Rural/Edge Travel: Existing Conditions

44% of fatal collisions vs. 13% of population

Expanded Mobility: Existing Conditions

- Unsafe & unreliable transportation for ag workers
- Agricultural worker transportation program (AWTP)

Farm to Market Travel: Existing Conditions

Farm to Market Travel: Innovations

Port of West Sacramento
SGC Project Objectives

Support Blueprint (MTP/SCS) implementation by enhancing agricultural viability:

- Community diet and food deserts
- Food system infrastructure needs
- Ag worker support
- •Rural community infrastructure
- Ag land protection and farm-to-market travel

Future Work

- Energy production
- Carbon sequestration
- Recreation and open space
- Regulations

David Shabazian 916.340.6231 dshabazian@sacog.org

www.sacog.org/rucs

100 3000